Site icon Nourish Nudge

Digital health innovation and artificial intelligence in cardiovascular care: a case-based review

Digital health innovation and artificial intelligence in cardiovascular care: a case-based review
  • Hassani, H., Silva, E. S., Unger, S., TajMazinani, M. & Mac Feely, S. Artificial intelligence (AI) or intelligence augmentation (IA): what is the future? AI 1, 143–155 (2020).

    Article 

    Google Scholar 

  • FDA. Spotlight: digital health regulatory science research opportunities. (2022).

  • Martin, S. S. et al. 2024 Heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation 149, e347–e913 (2024).

    Article 

    Google Scholar 

  • Golbus, J. R. et al. Digital technologies in cardiac rehabilitation: a science advisory from the American Heart Association. Circulation 148, 95–107 (2023).

    Article 

    Google Scholar 

  • Eng, D. et al. Automated coronary calcium scoring using deep learning with multicenter external validation. npj Digit. Med. 4, 88 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Lessmann, N. et al. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans. Med. Imaging 37, 615–625 (2018).

    Article 
    PubMed 

    Google Scholar 

  • de Vos, B. D. et al. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans. Med. Imaging 38, 2127–2138 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lessmann, N. et al. Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Procc. SPIE (2016).

  • Arad, Y., Goodman, K. J., Roth, M., Newstein, D. & Guerci, A. D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J. Am. Coll. Cardiol. 46, 158–165 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lloyd-Jones, D. M. et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 73, 3153–3167 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Munden, R. F. et al. Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR incidental findings committee. J. Am. Coll. Radiol. 15, 1087–1096 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hecht, H. S. et al. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the society of cardiovascular computed tomography and society of thoracic radiology. J. Cardiovasc. Comput. Tomogr. 11, 74–84 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kirsch, J., Martinez, F., Lopez, D., Novaro, G. M. & Asher, C. R. National trends among radiologists in reporting coronary artery calcium in non-gated chest computed tomography. Int. J. Cardiovasc. Imaging 33, 251–257 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Grant, J. K. et al. Overcoming barriers to implementation: improving incidental coronary calcium reporting on non-EKG gated chest CT scans. J. Clin. Lipidol. (2024).

  • Weiss, J. et al. Deep learning to estimate cardiovascular risk from chest radiographs. Ann. Intern. Med. 177, 409–417 (2024).

  • Ueda, D. et al. Artificial intelligence-based detection of aortic stenosis from chest radiographs. Eur. Heart J. Digit. Health 3, 20–28 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Ueda, D. et al. Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. Lancet Digit. Health 5, e525–e533 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khera, R. et al. Transforming cardiovascular care with artificial intelligence: from discovery to practice. J. Am. Coll. Cardiol. 84, 97–114 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Sutton, R. T. et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digit. Med. 3, 17 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Pagidipati, N. J. et al. Coordinated care to optimize cardiovascular preventive therapies in type 2 diabetes: a randomized clinical trial. JAMA 329, 1261–1270 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Marvel, F. A., Grant, J. K. & Martin, S. S. Clinician decision support tools: advances in lipid-lowering treatment intensification. Circulation 17, e010884 (2024).

    PubMed 

    Google Scholar 

  • Adusumalli, S. et al. Effect of passive choice and active choice interventions in the electronic health record to cardiologists on statin prescribing: a cluster randomized clinical trial. JAMA Cardiol. 6, 40–48 (2021).

    PubMed 

    Google Scholar 

  • Marvel, F. A. et al. Digital health intervention in acute myocardial infarction. Circulation 14, e007741 (2021).

    PubMed 

    Google Scholar 

  • Jain, S. S. et al. Artificial intelligence in cardiovascular care—Part 2: applications. J. Am. Coll. Cardiol. 83, 2487–2496 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Clusmann, J. et al. The future landscape of large language models in medicine. Commun. Med. 3, 141 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Phipps, J. et al. Early adverse physiological event detection using commercial wearables: challenges and opportunities. NPJ Digit. Med. 7, 136 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Williams, C. Y. et al. Use of a large language model to assess clinical acuity of adults in the emergency department. JAMA Netw. Open 7, e248895 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Patel, T. A. et al. Spending analysis of machine learning–based communication nudges in oncology. NEJM AI 1, AIoa2300228 (2024).

    Article 

    Google Scholar 

  • Ayers, J. W. et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern. Med. 183, 589–596 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Huang, J. et al. A critical assessment of using ChatGPT for extracting structured data from clinical notes. npj Digit. Med. 7, 106 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Singhal, K. et al. Large language models encode clinical knowledge. Nature 620, 172–180 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Devaraj, A., Wallace, B. C., Marshall, I. J. & Li, J. J. Paragraph-level simplification of medical texts. In Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics (Association for Computational Linguistics, 2021).

  • Haupt, C. E. & Marks, M. AI-generated medical advice—GPT and beyond. Jama 329, 1349–1350 (2023).

    Article 

    Google Scholar 

  • Ginsburg, G. S., Picard, R. W. & Friend, S. H. Key issues as wearable digital health technologies enter clinical care. N. Engl. J. Med. 390, 1118–1127 (2024).

    Article 

    Google Scholar 

  • Bhardwaj, V. et al. Cost-effectiveness of a digital health intervention for acute myocardial infarction recovery. Med. Care 59, 1023–1030 (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • Lu, Y. et al. National trends in racial and ethnic disparities in use of recommended therapies in adults with atherosclerotic cardiovascular disease, 1999-2020. JAMA Netw. Open 6, e2345964 (2023).

    Article 
    PubMed Central 

    Google Scholar 

  • Yang, W. E. et al. Strategies for the successful implementation of a novel iPhone loaner system (iShare) in mHealth interventions: prospective study. JMIR Mhealth Uhealth 7, e16391 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • Johnson, T. et al. Bridging the digital divide. JACC Adv. 2, 100587 (2023).

    Article 
    PubMed Central 

    Google Scholar 

  • Weng, D. et al. Heart rate trajectories in patients recovering from acute myocardial infarction: A longitudinal analysis of Apple Watch heart rate recordings. Cardiovasc. Digit. Health J.l 2, 270–281 (2021).

    Article 

    Google Scholar 

  • Avula, V., Wu, K. C. & Carrick, R. T. Clinical applications, methodology, and scientific reporting of electrocardiogram deep-learning models: a systematic review. JACC Adv. 2, 100686 (2023).

  • Wu, L. et al. Deep learning networks accurately detect ST-segment elevation myocardial infarction and culprit vessel. Front. Cardiovasc. Med. 9, 797207 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Cohen-Shelly, M. et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur. Heart J. 42, 2885–2896 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Galloway, C. D. et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol. 4, 428–436 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Raghunath, S. et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 26, 886–891 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carrick, R. T. et al. Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: a deep-learning approach. Heart Rhythm. 21, 1390–1397 (2024).

  • Narang, A. et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 6, 624–632 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ouyang, D. et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Krishna, H. et al. Fully automated artificial intelligence assessment of aortic stenosis by echocardiography. J. Am. Soc. Echocardiogr. 36, 769–777 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Milosevic, M., Jin, Q., Singh, A. & Amal, S. Applications of AI in multi-modal imaging for cardiovascular disease. Front. Radiol. 3, 1294068 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • de Vos, B. D., Lessmann, N., de Jong, P. A. & Išgum, I. Deep learning–quantified calcium scores for automatic cardiovascular mortality prediction at lung screening low-dose CT. Radiol. Cardiothorac. Imaging 3, e190219 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Kotanidis, C. P. et al. Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT angiograms: a prospective outcomes validation study in COVID-19. Lancet Digit. Health 4, e705–e716 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Griffin, W. F. et al. AI evaluation of stenosis on coronary CTA, comparison with quantitative coronary angiography and fractional flow reserve: a CREDENCE trial substudy. JACC Cardiovasc. Imaging 16, 193–205 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Nurmohamed, N. S. et al. Impact of atherosclerosis imaging-quantitative computed tomography on diagnostic certainty, downstream testing, coronary revascularization, and medical therapy: the CERTAIN study. Eur. Heart J. Cardiovasc. Imaging 25, 857–866 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Dundas, J. et al. Interaction of AI-enabled quantitative coronary plaque volumes on coronary CT angiography, FFRCT, and clinical outcomes: a retrospective analysis of the ADVANCE registry. Circ. Cardiovasc. Imaging 17, e016143 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Koo, B.-K. et al. Artificial intelligence–enabled quantitative coronary plaque and hemodynamic analysis for predicting acute coronary syndrome. JACC Cardiovasc. Imaging (2024).

  • Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Huang, J., Galal, G., Etemadi, M. & Vaidyanathan, M. Evaluation and mitigation of racial bias in clinical machine learning models: scoping review. JMIR Med. Inform. 10, e36388 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Ho, V. et al. Physician-and patient-elicited barriers and facilitators to implementation of a machine learning–based screening tool for peripheral arterial disease: preimplementation study with physician and patient stakeholders. JMIR Cardio 7, e44732 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • Bottomley, D. & Thaldar, D. Liability for harm caused by AI in healthcare: an overview of the core legal concepts. Front. Pharmacol. 14, 1297353 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • link

    Exit mobile version